top of page
 
[2024]

103. Alkali metal cations: no more spectators, but homogeneous catalysts in aqueous electrolytes

S. G. Ji,† M. M. Kim,† M. H. Han,† J. Cho, Y. Son, Y. Y. Kim, Z. H. Kim, K. H. Chae, H.-S. Oh,* H. Kim,* and C. H. Choi*

Submitted (2024) [Research Square]

 

102. Enhancing oxygen evolution reaction via surface reconstruction induced lattice oxygen mechanism

S. Choi, S.-J. Kim, S. Han, J. Wang, J. Kim, B. Koo, A. Ryabin, S. Kunze, H. Hyun, J. Han, S.-C. Haw, K. H. Chae, C. H. Choi, H. Kim, and J. Lim*

ACS Catalysis (2024) [Accepted]

그림1.jpg

101. Optimizing the atomic structure of ruthenium deposited on Pt/C cathode catalysts to enhance durability of automotive fuel cell

S.-H. You, W. Lee, H. Y. Jang, K.-S. Kim, J. Baek, G. Choe, S. G. Ji, V. K. Paidi, C. H. Choi, S. Back, K.-S. Lee,* and Y.-T. Kim*

Applied Catalysis B: Environment and Energy 359 (2024) 124486 [Link]

1-s2.0-S0926337324008002-ga1_lrg.jpg

100. Proton‐coupled electron transfer on Cu2O/Ti3C2Tx MXene for propane (C3H8) synthesis from electrochemical CO2 Reduction

J. Y. Kim, W. T. Hong, T. Phu, S. C. Cho, B. Kim,U. Baeck, H.-S. Oh, J. H. Koh, X. Yu, C. H. Choi, J. Park,* S. U. Lee,* C.-H. Chung, and J. K. Kim*

Advanced Science (2024) [Accepted]

1.jpg

99. Understanding the preparative chemistry of atomically dispersed nickel catalysts for achieving high-efficiency H2O2 electrosynthesis

J. S. Lim, J. Woo, G. Bae, S. Yoo, J. Kim, J. H. Kim, J. H. Lee, Y. J. Sa, J.-W. Jang, Y. J. Hwang, C. H. Choi,* and S. H. Joo*

Chemical Science 15 (2024) 13807 [Link]

qq.jpg

98. Dissolution of Ti porous transport layer in proton exchange membrane water electrolyzer

J. Cho, D. H. Kim, M. W. Noh, H. Kim, H.-G. Oh, P. Lee, S. Yoon, W. Won, Y.-J. Park,* U. Lee,* and C. H. Choi*

Journal of Materials Chemistry A 12 (2024) 23688 [Link]

aa.jpg

97. An effective catholyte for sulfide-based all-solid-state batteries utilizing gas absorbents

H. Choi, S. Cho, Y.-S. Kim, J. S. Cho, H. Kim, H. Lee, S. Ko, K. Kim, S.-M. Lee, S.-T. Hong, C. H. Choi, D.-H. Seo,* and S. Park*

Small (2024) [Accepted]

smll202403147-gra-0001-m.jpg

96. Tailoring heterostructure boosts a noble-metal-free oxygen-evolving electrocatalyst in acid

J. Wang,* Y. Zhang, Y. Wang,* J. Cho, T.-S. Chan, Y. Ha, S.-C. Haw, C.-W. Kao, Z. Wang, J. Lei, M. Ju, J. Tang, T. Liu, S. Zhao, Y.
Dai, A. Baron-Wiechec, F.-R. Chen, W. Wang, C. H. Choi, Z. Shao,* M. Ni*

Energy & Environmental Science 17 (2024) 5972 [Link]

95. Tailoring electrochemical water oxidation activity from the isostructural series of alkaline-stable bimetallic Fe,Ni-azolate metal-organic frameworks

M. Kim, J. Jeong, D. H. Kim, G. Park, J. Yi, S. Kim, H. Kim, C. H. Choi, H. Shin,* and S. S. Park*

Advanced Energy Materials 14 (2024) 2401198 [Link]

Manuscript_revised.jpg

94. Single-site-level deciphering of the complexity of electrochemical oxygen reduction on Fe-N-C catalysts

G Bae, H. C. Kwon,* M. H, Han, H.-S. Oh, F. Jaouen,* and C. H. Choi*

ACS Catalysis 14 (2024) 8184 [Link]

aa.tif

93. A natural molecule-driven organometallic conformal overlayer for high efficiency photoelectrochemical water splitting

Y. Li, M.-C. Kim, C. Xia, W. T. Hong, J. Kim, G Bae, Y. S. Jang, S. Y. Jeong, E. Sim, C. H. Choi, T.-H. Kim, K. H. Kim,* and J. K. Kim*

Applied Catalysis B: Environmental 343 (2024) 123516 [Link]

그림1.jpg

92. ClAg14(C≡CtBu)12 nanoclusters as efficient and selective electrocatalysts toward industrially viable CO2 conversion

H. Seong, K. Chang, F. Sun, S. Lee, S. M. Han, Y. Kim, C. H Choi,* Q. Tang,* and D. Lee*

Advanced Science 11 (2024) 2306089 [Link]

그림1.jpg

91. Activity restoration of Pt–Ni octahedron via phase recovery for anion exchange membrane-unitized regenerative fuel cells

C. Oh, M. H. Han, Y.-J. Ko, J. S Cho, M. W. Pin, P. Strasser, J.-Y. Choi, H. Kim,* C. H. Choi,* W. H. Lee,* and H.-S Oh*

Advanced Energy Materials 14 (2024) 2302971 [Link]

aa.tif
 
[2023]

90. Unraveling the complex causality behind Fe-N-C degradation in fuel cells

G. Bae, M. M. Kim, M. H. Han, J. Cho, D. H. Kim, M. T. Sougrati, J. Kim, K.-S. Lee, S. H. Joo, W. A. Goddard III, H.-S. Oh,* H. Kim,* F. Jaouen,* and C. H. Choi*

Nature Catalysis 6 (2023) 1140 [Link (Research Square)]

Introduced in "YTN" News [Link]

Graphical abstract.tif

89. A conformal titanyl phosphate amorphous overlayer for enhancing photoelectrochemical hydrogen peroxide production

J. Kim, Y. E. Kim, M. Je, W. T. Hong, C.-L. Lee, T.-H. Kim, S. M. Cho, C. H. Choi, H. Choi,* W.-S. Choe,* and J. K. Kim*

Journal of Energy Chemistry 86 (2023) 399 [Link]

1-s2.0-S2095495623004394-ga1_lrg.jpg

88. Electrocatalytic access to azetidines via intramolecular allylic hydroamination: Scrutinizing key oxidation steps through electrochemical kinetic analysis

S. H. Park, G. Bae,, A. Choi, S. Shin, K. Shin,* C. H. Choi,* and H. Kim*

Journal of the American Chemical Society 145 (2023) 15360 [Link]

그림1.png

87. Unlocking Cu(I)-mediated catalytic pathways for efficient ROS generation by incorporating an oxazole-based histidine surrogate into Cu(II)–ATCUN complexes

Y. J. Lee,† Y. Kim,† H. Kim,† J. Choi,† G. H. Noh, K.-S. Lee, J. Lee, C. H. Choi,* S. H. Kim,* and J. Seo*

Inorganic Chemistry 62 (2023) 10279 [Link]

aa_edited.png

86. Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis

J. Cho,† T. Lim,† H. Kim,† L. Meng, J. Kim, S. Lee, J. H. Lee, G. Y. Jung, K.-S. Lee, F. Viñes, F. Illas, K. S. Exner,* S. H. Joo,* and C. H. Choi*

Nature Communications 14 (2023) 3233  [Link (Research Square)]

그림4.jpg

85. Rational design of a stable Fe-rich Ni-Fe layered double hydroxide for the industrially relevant dynamic operation of alkaline water electrolyzers

M. Mehdi, B.-S. An, H. Kim, S. Lee, C. Lee, M. Seo, M. W. Noh, W.-C. Cho, C.-H. Kim, C. H. Choi, B.-H. Kim,* M. J. Kim,* and H.-S. Cho*

Advanced Energy Materials 13 (2023) 2204403 [Link]

그림1_edited_edited.jpg

84. Meticulous integration of N and C active sites in Ni2P electrocatalyst for sustainable ammonia oxidation and efficient hydrogen production

C. Jo, S. Surendran, M.-C. Kim, T.-Y. An, Y. Lim, H. Choi, G. Janani, S. C. Jesudass, D. J. Moon, J. Kim, J. Y. Kim, C. H. Choi, M. Kim, J. K. Kim,* and U. Sim*

Chemical Engineering Journal 463 (2023) 142314 [Link]

CEJ-D-22-21858_R2.jpg

83. Electrochemically robust oxide-supported dendritic Pt and Ir nanoparticles for highly effective polymer electrolyte membrane-unitized regenerative fuel cells

Y.-J. Ko, H. Kim, W. Lee, C. H. Choi, W. Kim, J.-Y. Choi, P. Strasser,* and H.-S. Oh*

Journal of Materials Chemistry A 11 (2023) 5864 [Link]

Get.tif

82. Operando stability of single-atom electrocatalysts

G. Bae, S. Han, H.-S. Oh, and C. H. Choi*

Angewandte Chemie International Edition 62 (2023) e202219227 [Link]

11.tif

81. Structural heterogeneity of single-atom catalysts and true active site generation via ligand exchange during electrochemical H2O2 production

S. Chi, S. G. Ji, M. Kim, H. Kim, C. H. Choi,* and M. Choi*

Journal of Catalysis 419 (2023) 49 [Link]

그림1.jpg

80. Transplanting gold active sites into non-precious metal nanoclusters for efficient CO2-to-CO electroreduction

H. Seong, Y. Jo, V. Efremov, Y. Kim, S. Park, S. M. Han, K. Chang, W. Choi, W. Kim,* C. H. Choi,* J. S. Yoo,* and D. Lee*

Journal of the American Chemical Society 145 (2023) 2152 [Link]

aa.tif

79. Fe–N/C catalysts with tunable mesoporous structure and carbon layer number reveal the role of interlayer O2 activation

J. Woo, J. S. Lim, T. Lim, D. S. Baek, J. H. Kim, H. Y. Jeong, C. H. Choi, and S. H. Joo*

EES Catalysis 1 (2023) 62 [Link]

a.tif

78. Elucidation of electrochemically induced but chemically driven Pt dissolution

J. Cho, H. Kim,* H.-S. Oh, and C. H. Choi*

JACS Au 3 (2023) 105 [Link]

aa.tif

77. Unveiling the role of Ni in Ru-Ni oxide for oxygen evolution: lattice oxygen participation enhanced by structural distortion

Y.-J. Ko, M. H. Han, C. W. Lim, S.-H. Yu, C. H. Choi, B. K. Min, J.-Y. Choi, W. H. Lee,* and H.-S. Oh*

Journal of Energy Chemistry 77 (2023) 54 [Link]

1.jpg

76. Low temperature synthesis of new highly graphitized N-doped carbon for Pt fuel cell supports, satisfying DOE 2025 durability standards for both catalyst and support

H.-Y. Lee, T. H. Yu, C.-H. Shin, A. Fortunelli, S. G. Ji, Y. Kim, T.-H. Kang, B.-J. Lee, B. V. Merinov, W. A. Goddard III,* C. H. Choi,* and J.-S. Yu*

Applied Catalysis B: Environmental 323 (2023) 122179 [Link]

APCATB-D-22-03763_R1 (1).jpg
 
[2022]

75. Enhanced electroreduction of CO2 by Ni−N−C catalysts from the interplay between valency and local coordination symmetry

D. Shin, H, Choi, J. An, C. H. Sohn, C. H. Choi, H, Shin,* and H. Kim*

Journal of Materials Chemistry A 10 (2022) 22523  [Link]

11.jpg

74. Nanocrystalline iron pyrophosphate (Fe4(P2O7)3) regulated amorphous phosphate overlayer for enhancing solar water oxidation

C. Xia, Y. Li, M. Je, J. Kim, S. M. Cho, C. H. Choi, H. Choi, T.-H. Kim, and J. K. Kim*

Nano-Micro Letters 14 (2022) 209  [Link]

그림1.jpg

73. Prediction of the catalytic site of single-atom Ni catalyst using the hydrogen evolution reaction as a model platform

H. Choi, D. H. Kim, M. H. Han, H.-S. Oh, J. Heo, H.-K. Lim*, and C. H. Choi*

Electrochimica Acta 431 (2022) 141138 [Link]

Graphtical Abstract.tif

72. A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction

S.-J. Shin,† H. Choi,† S. Ringe, D. H. Won, H.-S. Oh, D. H. Kim, T. Lee, D.-H. Nam, H. Kim,* and C. H. Choi*

Nature Communications 13 (2022) 5482 [Link (Research Square (Previous version: ChemRxiv))]

ㅁ.jpg

71. Repurposing a peptide antibiotic as a catalyst: multicopperdaptomycin complex as a cooperative O–O bond formation and activation catalyst

Y. J. Lee,† H. Kim,† Y. Kim,† K. H. Cho,† S. Hong, K. T. Nam,* S. H. Kim,* C. H. Choi,* and J. Seo*

Inorganic Chemistry Frontiers 9 (2022) 4741 [Link]

4.jpg

70. Unraveling Ni-Fe 2D nanostructure with enhanced oxygen evolution via in-situ/operando spectroscopies

Y.-J. Ko,† M. H. Han,† H. Kim,† J.-Y. Kim, W. H. Lee, J. Kim, J. Y. Kwak, C.-H. Kim, T.-E. Park, S.-H. Yu, W.-S. Lee, C. H. Choi,* P. Strasser,* and H.-S. Oh*

Chem Catalysis 2 (2022) 2312 [Link]

3.jpg

69. CeO2 nanoarrays decorated Ce-doped ZnO nanowire photoanode for efficient hydrogen production with glycerol as a sacrificial agent

S. Kim, E. An, I. Oh, J. B. Hwnag, S. Seo, Y. Jung, J.-C. Park, H. Choi, C. H. Choi, and S. Lee*

Catalysis Science & Technology 12 (2022) 5517 [Link]

2.jpg

68. Does the encapsulation strategy of Pt nanoparticles with carbon layers really ensure both highly active and durable electrocatalysis in fuel cells?

S. G. Ji, H. C. Kwon, T.-H. Kim, U. Sim,* and C. H. Choi*

ACS Catalysis  12 (2022) 7317 [Link]

aa.tif

67. Unraveling the role of introduced W in oxidation tolerance for Pt-based catalysts via on-line inductive coupled plasma-mass spectrometry

M. H. Han, Y.-J. Ko, B. K. Min, S.-H. Yu, C. H. Choi, J.-Y. Choi, W. H. Lee,* and H.-S. Oh*

Electrochemistry Communications  139 (2022) 107301 [Link]

1.jpg

66. A sulfur self-doped multifunctional biochar catalyst for overall water splitting and supercapacitor from Camellia Japonica flowers

C. Xia, S. Surendran, S. Ji, D. Kim, Y. Chae, J. Kim, M. Je, M.-K. Han, W.-S. Choe, C. H. Choi,* H. Choi,* J. K. Kim,* and U. Sim*

Carbon Energy 4 (2022) 491 [Link]

그림1.jpg

65. Understanding the grain boundary behavior of bimetallic platinum-cobalt alloy nanowires towards oxygen electro-reduction

M. K. Kabiraz, B. Ruqia, J. Kim, H. Kim, H. J. Kim, Y. Hong, M. J. Kim, Y. K. Kim, C. Kim, W.-J. Lee, W. Lee, G. H. Hwang, H. C. Ri, H. Baik, H.-S. Oh, Y. W. Lee, L. Gao, H. Huang, S. M. Paek, Y.-J. Jo, C. H. Choi,* S. W. Han,* and S.-I. Choi*

ACS Catalysis 12 (2022) 3516 [Link]

그림1.jpg

64. On the importance of the electric double layer structure in aqueous electrocatalysis

S.-J. Shin,† D. H. Kim,† G. Bae,† S. Ringe, H. Choi, H.-K. Lim, C. H. Choi,* and H. Kim*

Nature Communications 13 (2022) 174 [Link (Research Square)]

그림1.jpg
 
[2021]

63. Co-catalytic effects of Bi-based metal-organic framework on BiVO4 photoanodes for photoelectrochemical water oxidation

S. Kim, T. A. D. Peña, S. Seo, H. Choi, J. Park, J.-H. Lee, J. Woo, C. H. Choi, and S. Lee*

Applied Surface Science 563 (2021) 150357 [Link]

ass.jpg

62. Single-atom catalysts – A perspective towards application in electrochemical energy conversion

F. D. Speck,* J. H. Kim, G. Bae, S. H. Joo, K. J. J. Mayrhofer, C. H. Choi,* and S. Cherevko*

JACS Au 1 (2021) 1086 [Link]

그림1.jpg

61. Real-time monitoring of electrochemical carbon corrosion in alkaline media

S. G. Ji, H. Kim, W. H. Lee, H.-S. Oh, and C. H. Choi*

Journal of Materials Chemistry A 9 (2021) 19834 [Link]

Selected for the virtual issue of Journal of Materials Chemistry A Emerging Investigators

그림1.tif

60. High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells

W. H. Lee, Y.-J. Ko, J. H. Kim, C. H. Choi, K. H. Chae, H. Kim, Y. J. Hwang, B. K. Min, P. Strasser,* and H.-S. Oh*

Nature Communications 12 (2021) 4271 [Link]

그림1.jpg

59. Quantification of active site density and turnover frequency: from single-atom metal to nanoparticle electrocatalysts

G. Bae,† H. Kim,† H. Choi, P. Jeong, D. H. Kim, H. C. Kwon, K.-S. Lee, M. Choi, H.-S. Oh, F. Jaouen,* and C. H. Choi*

JACS Au 1 (2021) 586 [Link]

00.tif

58. Bendable BiVO4-based photoanodes on a metal substrate realized through template engineering for photoelectrochemical water splitting

J. Lee†, S. Lee†, S. Seo, S. Kim, J. Lee, J. Song, J. Yang, Y. Jung, J.-H. Lee, R.-K. Ko, H. Choi, C. H. Choi and S. Lee*

ACS Applied Materials & Interfaces 13 (2021) 16478 [Link]

am-2021-02314m.jpg

57. Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst

D. H. Kim†, S. Ringe†, H. Kim, S. Kim, B. Kim, G. Bae, H.-S. Oh, F. Jaouen, W. Kim,* H. Kim* and C. H. Choi*

Nature Communications 12 (2021) 1856 [Link]

Introduced in 'KBS' News [Link]

그림1.jpg

56. Pyrolyzed M–Nx catalysts for oxygen reduction reaction: progress and prospects

E. Luo, Y. Chu, J. Liu, Z. Shi, S. Zhu, L. Gong, J. Ge,* C. H. Choi,* C. Liu* and W. Xing*

Energy & Enviromental Science 14 (2021) 2158 [Link]

a.jpg

55. Highly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration

W. H. Lee, C. W. Lim, S. Y. Lee, K. H. Chae, C. H. Choi, U. Lee, B. K. Min, Y. J. Hwang* and H.-S. Oh*

Nano Energy 84 (2021) 105859 [Link]

그림1.jpg

54. Identification of single-atom Ni site active toward electrochemical CO2 conversion to CO

H. Kim†, D. Shin†, W. Yang†, D. H. Won†, H.-S. Oh, M. W. Chung, D. Jeong, S. H. Kim, K. H. Chae, J. Y. Ryu, J. Lee, S. J. Cho, J. Seo,* H, Kim* and C. H. Choi*

Journal of the American Chemical Society 143 (2021) 925 [Link]

aa.jpg
 
[2020]

(Book Chapter) Bridging homogeneous and heterogeneous systems: Atomically dispersed metal atoms in carbon matrices for electrocatalytic CO2 reduction

H.-Y. Jeong, M. Balamurugan, C. H. Choi and K. T. Nam

Carbon Dioxide Electrochemistry: Homogeneous and Heterogeneous Catalysis Chapter 6 [Link]

53. Boosting the role of Ir in mitigating corrosion of carbon support by alloying with Pt

J. Bak, H. Kim, S. J. Lee, M. Kim, E.-J. Kim, J. Roh, J. Shin, C. H. Choi and E. Cho*

ACS Catalysis 10 (2020) 12300 [Link]

TOC.tif

52. Operando stability of platinum electrocatalysts in ammonia oxidation reactions

H. Kim, W. Yang, W. H. Lee, M. H. Han, J. Moon, C. Jeon, D. Kim, S. G. Ji, K. H. Chae, K.-S. Lee, J. Seo, H.-S. Oh, H. Kim and C. H. Choi*

ACS Catalysis 10 (2020) 11674 [Link]

ㅁ.jpg

51. Underestimation of platinum electrocatalysis induced by carbon monoxide evolved from graphite counter electrode

S. G. Ji, H. Kim, C. Park, W. Kim and C. H. Choi*

ACS Catalysis 10 (2020) 10773 [Link]

Introduced at 'Research Highlights' of Nature Catalysis [Link]

a.jpg

 

50. Oxygen-vacancies induced NiFe-hydroxide as a scalable, efficient, and stable electrode for alkaline overall water splitting

W. H. Lee, M. H. Han, U. Lee, K. H. Chae, H. Kim, Y. J. Hwang, B. K. Min, C. H. Choi* and H.-S. Oh*

ACS Sustainable Chemistry & Engineering 8 (2020) 14071 [Link]

그림1.png

 

49. Atomistic insights into the stability of Pt single atom electrocatalysts

F. D. Speck,† M. T. Y. Paul,†* F. Ruiz-Zepeda, M. Gatalo, H. Kim, H. C. Kwon, K. J. J. Mayrhofer, M. Choi, C. H. Choi, N. Hodnik and S. Cherevko*

Journal of the American Chemical Society 142 (2020) 15496 [Link]

ja-2020-07138n.tiff

 

48. pH effect on the H2O2-induced deactivation of Fe-N-C catalysts

G. Bae†, M. W. Chung†, S. G. Ji, F. Jaouen* and C. H. Choi*

ACS Catalysis 10 (2020) 8485 [Link]

1.png

 

47. Highly selective and scalable CO2 to CO-electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration

W. H. Lee, Y.-J. Ko, Y. Choi, S. Y. Lee, C. H. Choi, Y. J. Hwang, B. K. Min, P. Strasser* and H.-S. Oh*

Nano Energy 76 (2020) 105030 [Link]

a.png

 

46. Carbon-supported IrCoOx nanoparticles as an efficient and stable OER electrocatalyst for practicable CO2 electrolysis

W. H. Lee, H. N. Nong, C. H. Choi, K. H. Chae, Y. J. Hwang, B. K. Min, P. Strasser* and H.-S. Oh*

Applied Catalysis B-Environmental 269 (2020) 118820 [Link]

TOC_edited.png

 

45. Overestimation of photoelectrochemical hydrogen evolution reactivity induced by noble metal impurities dissolved from counter/reference electrodes

S. G. Ji, H. Kim, H. Choi, S. Lee* and C. H. Choi*

ACS Catalysis 10 (2020) 3381-3389 [Link]

그림1.png
 
[2019]

 

44. Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core-shell nanocrystal

J. Kim†, H. Kim†, W.-J. Lee, B. Ruqia, H. Baik, H.-S. Oh, S.-M. Paek, H.-K. Lim,* C. H. Choi* and S.-I. Choi*

Journal of the American Chemical Society 141 (2019) 18256-18263 [Link]

Selected for the virtual issue of JACS Young Investigators 2020 [Link

TOC.png

 

43. Turning harmful deposition of metal impurities into activation of nitrogen-doped carbon catalyst toward durable electrochemical CO2 reduction

C. Kim, Y.-K. Choe, D. H. Won, U. Lee, H.-S. Oh, D. K. Lee, C. H. Choi, S. Yoon, W. Kim, Y. J. Hwang* and B. K. Min*

ACS Energy Letters 4 (2019) 2343-2350 [Link]

toc.jpg

 

41. Effect of Pt introduced on Ru-based electrocatalyst for oxygen evolution activity and stability

J. Yi†, W. H. Lee†, C. H. Choi, Y. Lee, K. S. Park, B. K. Kim, Y. J. Hwang* and H.-S. Oh*

Electrochemistry Communications 104 (2019) 106469 [Link]

그림1.png

 

42. Catalytic surface specificity of Ni(OH)₂ decorated Pt nanocubes for the hydrogen evolution reaction in an alkaline electrolyte

Y. Hong, C. H. Choi and S.-I. Choi*

ChemSusChem 12 (2019) 4021-4028 [Link]

EC19-357_페이지_08.jpg

 

40. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts

M. Suk†, M. W. Chung†, M. H. Han, H.-S. Oh* and C. H. Choi*

Catalysis Today 359 (2021) 99-105 [Link]

그림1.jpg

 

39. Accurate evaluation of active site density (SD) and turnover frequency (TOF) of PGM-free metal-nitrogen-doped carbon (MNC) electrocatalysts using CO cryo adsorption

F. Luo, C. H. Choi, M. J. M. Primbs, W. Ju, L. Shuang, N. D. Leonard, A. Thomas, F. Jaouen* and P. Strasser*

ACS Catalysis 9 (2019) 4841-4852 [Link]

TOC.gif

 

38. Deactivation of Fe-N-C catalysts during catalyst ink preparation process

G. Chon†, M. Suk†, F. Jaouen, M. W. Chung* and  C. H. Choi*

Catalysis Today 359 (2021) 9-15 [Link]

 

그림1.png
 
[2018]

 

37. Carbon monoxide as a promoter of atomically dispersed platinum catalyst in electrochemical hydrogen evolution reaction

H. C. Kwon, M. Kim, J.-P. Grote, S. J. Cho, M. W. Chung, H. Kim, D. H. Won, A. R. Zeradjanin, K. J. J. Mayrhofer, M. Choi, H. Kim* and C. H. Choi*

Journal of the American Chemical Society 140 (2018) 16198-16205 [Link]

 

그림2.png

 

36. Achilles' heel of iron-based catalysts during oxygen reduction in acidic medium

C. H. Choi,* H. Lim, M. W. Chung, G. Chon. N. R. Sahraie, A. Altin, M.-T. Sourgrati, L. Stievano, H. S. Oh, E. S. Park, F. Luo, P. Strasser, G. Drazic, K. J. J. Mayrhofer, H. Kim* and F. Jaouen*

Energy & Environmental Science 11 (2018) 3176-3182 [Link (ChemRxiv)]

Introduced at 'Research Highlights' of Nature Catalysis [Link]

 

그림1.png

 

35. NOx-induced deactivation of Pt electrocatalysis towards the ammonia oxidation reaction

H. Kim, M. W. Chung and C. H. Choi*

Electrochemistry Communications 94 (2018) 31-35. [Link]

그림1.jpg

34. Electrochemical evidence for two sub-families of FeNxCy moieties with concentration-dependent cyanide poisoning

M. W. Chung, G. Chon, H. Kim, F. Jaouen* and C. H. Choi*

ChemElectroChem 5 (2018) 1880-1885. [Link]

 
[2017]

33. Unraveling the nature of sites active toward hydrogen peroxide reduction in Fe-N-C catalysts

C. H. Choi,* W. S. Choi, O. Kasian, A. K. Mechler, M. Sougrati, S. Brüller, K. Strickland, Q. Jia, S. Mukerjee, K. J. J. Mayrhofer, and F Jaouen*

Angewandte Chemie International Edition 56 (2017) 8809-8812. [Link]

32. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance

J. C. Park and C. H. Choi*

Journal of Power Sources 358 (2017) 76-84. [Link]

31. Carbon nanofibers as parent materials for a graphene-based Fe-N-C catalyst for the oxygen reduction reaction

M. W. Chung and C. H. Choi*

Catalysis Today 295 (2017) 125-131. [Link]

30. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production

E. Pizzutilo,* O. Kasian, C. H. Choi, S. Cherevko, G. J. Hutchings, K. J. J. Mayrhofer, and S. J. Freakley*

Chemical Physics Letters 683 (2017) 436-442. [Link]

29. Fluorophore metal–organic complexes: High-throughput optical screening for aprotic electrochemical systems

S. H. Park, C. H. Choi, S. Y. Lee, and S. I. Woo*

ACS Combinatorial Science 19 (2017) 81-84. [Link]

 
[2016]

28. Dimensional tailoring of nitrogen-doped graphene for high-performing supercapacitors

S. Y. Lee, C. H. Choi, M. W. Chung, J. H. Chung, and S. I. Woo*

RSC Advances 6 (2016) 55577-55583. [Link]

 

27. Minimizing operando demetallation of Fe-N-C electrocatalysts in acidic medium

C. H. Choi,* C. Baldizzone, G. Polymeros, E. Pizzutilo, O. Kasian, A. K. Schuppert, N. R. Sahraie, M.-T. Sougrati, K. J. J. Mayrhofer,*
and F. Jaouen* 

ACS Catalysis 6 (2016) 3136-3146. [Link]

 

26. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst

C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H. Kim, K. J. J. Mayrhofer, H. Kim*, and M. Choi*

Nature Communications 7 (2016) 10922. [Link]

[2015]

 

25. Stability of Fe-N-C catalysts in acidic medium studied by operando spectroscopy

C. H. Choi,* C. Baldizzone, J.-P. Grote, A. K. Schuppert, F. Jaouen*, and K. J. J. Mayrhofer*

Angewandte Chemie International Edition 54 (2015) 12753-12757. [Link]

 

24. Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2

D. H. Won†,  C. H. Choi†,  J. Chung, M. W. Chung, E. -H. Kim, and S. I. Woo*

ChemSusChem 8 (2015) 3092-3098. [Link]

 

23. Optimization of catalyst layer composition for PEMFC using graphene-based oxygen reduction reaction catalysts

J. C. Park, S. H. Park, M. W. Chung, C. H. Choi, B. K. Kho, and S. I. Woo*

Journal of Power Sources 286 (2015) 166-174. [Link]

 

22. Aerosol-assisted controlled packing of silica nanocolloids: templateless synthesis of mesoporous silicates with structural tunability and complexity

K. Min, C. H. Choi, M. Y. Kim, and M. Choi*

Langmuir 31 (2015) 542-550. [Link]

 

21.Dimensionality-dependent oxygen reduction reaction activity on doped graphene: Is graphene a promising substrate for electrocatalysis?

M. W. Chung†, C. H. Choi†, S. Y. Lee, and S. I. Woo*

Nano Energy 11 (2015) 526-532. [Link]

[2014]

 

20. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface

C. H. Choi, H. C. Kwon, S. Yook, H. Shin, H. Kim, and M. Choi*

 The Journal of  Physical Chemistry C 118 (2014) 30063-30070. [Link]

 

19. Long-range electron transfer over graphene-based catalyst for high performing oxygen reduction reactions: importance of size, N-doping, and metallic impurities

C. H. Choi†, H. K. Lim†, M. W. Chung, J. C. Park, H. Shin, H. Kim,* and S. I. Woo*

Journal of the American Chemical Society 136 (2014) 9070-9077. [Link]

 

18. Photoelectrochemical production of formic acid and methanol from carbon dioxide on metal decorated CuO/Cu2O layered thin films under visible light irradiation

D. H. Won†, C. H. Choi†, J. Chung, and S. I. Woo*

Applied Catalysis B: Environmental 158-159 (2014) 217-223. [Link]

 

17. Synergism between CdTe semiconductor and pyridine-photoenhanced electrocatalysis for CO2 reduction to formic acid

J. H. Jeon, P. M. Mareeswaran, C. H. Choi, and S. I. Woo*

RSC Advances 4 (2014) 3016-3019. [Link]

 

16. Nitrogen-doped graphene/carbon nanotube self-assembly for efficient oxygen reduction reaction in acid media

C. H. Choi, M. W. Chung, H. C. Kwon, J. H. Chung, and S. I. Woo*

Applied Catalysis B: Environmental 144 (2014) 760-766. [Link]

[2013]

 

15. Combinatorial high-throughput screening for highly active Pd-Ir-Ce based ternary catalysts in electrochemical oxygen reduction reaction

S. H. Park, C. H. Choi, J. K. Koh, C. Pak, S. Jin, and S. I. Woo*

ACS Combinatorial Science 15 (2013) 572–579. [Link]

 

14. Doping of chalcogens (Sulfur and/or Selenium) in nitrogen-doped graphene/CNT self-assembly for enhanced oxygen reduction activity in acid media

C. H. Choi, M. W. Chung, Y. J. Jun, and S. I. Woo*

RSC Advances 3 (2013) 12417-12422. [Link]

13. Designed synthesis of well-defined Pd@Pt core–shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts

R. Choi, S.-I. Choi, C. H. Choi, K. M. Nam, S. I. Woo, J. T. Park, S. W. Han*

Chemistry-A European Journal 19 (2013) 8190-8198. [Link]

 

12. B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media

C. H. Choi, M. W. Chung, H. C. Kwon, S. H. Park, and S. I. Woo*

Journal of Materials Chemistry A 1 (2013) 3694-3699. [Link]

 

11. Enhanced electrochemical oxygen reduction reaction by restacking of N-doped single graphene layers

C. H. Choi, M. W. Chung, S. H. Park, and S. I. Woo*

RSC Advances 3 (2013) 4246-4253. [Link]

 

10. Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2 under ultraviolet light

B. J. Ma, J. S. Kim, C. H. Choi, and S. I. Woo*

International Journal of Hydrogen Energy 38 (2013) 3582-3587. [Link]

 

9. Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acid media

C. H. Choi, M. W. Chung, S. H. Park, and S. I. Woo*

Physical Chemistry Chemical Physics 15 (2013) 1802-1805. [Link]

 

8. Easy and controlled synthesis of nitrogen-doped carbon

C. H. Choi, S. H. Park, M. W. Chung, and S. I. Woo*

Carbon 55 (2013) 98-107. [Link]

[2012]

 

7. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity

C. H. Choi, S. H. Park, and S. I. Woo*

ACS Nano 6 (2012) 7084–7091. [Link]

6. Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: Effects of the amount of P-doping on the physical and electrochemical properties of carbon

C. H. Choi, S. H. Park, and S. I. Woo*

Journal of Materials Chemistry 22 (2012) 12107-12115. [Link]

5. Oxygen reduction activity of Pd-Mn3O4 nanoparticles and performance enhancement by voltammetrically accelerated degradation

C. H. Choi, S. H. Park, and S. I. Woo*

Physical Chemistry Chemical Physics 14(19) (2012) 6842-6848. [Link]

 

4. N-doped carbon prepared by pyrolysis of dicyandiamide with various MeCl2-xH2O (M=Co, Fe, and Ni) composites: effect of type and amount of metal seed on oxygen reduction reactions

C. H. Choi, S. H. Park, and S. I. Woo*

Applied Catalysis B: Environmental 119-120 (2012) 123-131. [Link]

 

3. Facile growth of N-doped CNTs on Vulcan carbon and the effects of iron content on electrochemical activity for oxygen reduction reaction

C. H. Choi, S. H. Park, and S. I. Woo*

International Journal of Hydrogen Energy 37 (2012) 4563-4570. [Link]

[2011]

 

2. Highly active N-doped-CNTs grafted on Fe/C prepared by pyrolysis of dicyandiamide on Fe2O3/C for electrochemical oxygen reduction reaction

C. H. Choi, S. Y. Lee, S. H. Park, and S. I. Woo*

Applied Catalysis B: Environmental 103 (2011) 362–368. [Link]

1. Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions

C. H. Choi, S. H. Park, and S. I. Woo*

Green Chemistry 13 (2011) 406-412. [Link]

bottom of page